skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hong, Zhenxiang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Solar jets are well-collimated plasma ejections in the solar atmosphere. They are prevalent in active regions, the quiet Sun, and even coronal holes. They display a range of temperatures, yet the nature of the cool components has not been fully investigated. In this paper, we show the existence of the precursors and quasi-periodic properties for two chromospheric jets, mainly utilizing the He  I 10 830 Å narrowband filtergrams taken by the Goode Solar Telescope (GST). The extreme ultraviolet (EUV) counterparts present during the eruption correspond to a blowout jet (jet 1) and a standard jet (jet 2), as observed by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO). The high-resolution He  I 10 830 Å observation captures a long-lasting precursor for jet 1, signified by a series of cool ejections. They are recurrent jet-like features with a quasi-period of about five minutes. On the other hand, the cool components of jet 2, recurrently accompanied by EUV emissions, present a quasi-periodic behavior with a period of about five minutes. Both the EUV brightening and He  I 10 830 Å absorption show that there was a precursor for jet 2 that occurred about five minutes before its onset. We propose that the precursor of jet 1 may be the consequence of chromospheric shock waves, since the five-minute oscillation from the photosphere can leak into the chromosphere and develop into shocks. Then, we find that the quasi-periodic behavior of the cool components of jet 2 may be related to magnetic reconnections modulated by the oscillation in the photosphere. 
    more » « less
  2. Abstract With high-resolution narrowband He i 10830 Å filtergrams from Goode Solar Telescope, we give an extensive analysis for four granule-sized microeruptions which appear as the gentle ejection of material in He i 10830 Å band. The analysis was aided with the EUV data from Atmospheric Imaging Assembly and line-of-sight magnetograms from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. The microeruptions are situated on magnetic polarity inversion lines (PILs), and their roots are accurately traced down to intergranular lanes. Their durations are different: two microeruptions are repetitive microjets, lasting ∼50 and 27 minutes respectively, while the other two events are singular, lasting ∼5 minutes. For the two microjets, they are continuous and recurrent in the He i 10830 Å band, and the recurrence is quasiperiodic with a period of ∼5 minutes. We found that only transient cospatial EUV brightenings are observed for the longer duration microjets and EUV brightenings are absent for the two singular microeruptions. What is essential to the longer duration microjets is that granules with the concentration of a positive magnetic field persistently transport the magnetic field to the PILs, canceling the opposite magnetic flux and making the base of the two microjets and the underlying granules migrate with the speed of ∼0.25 and 1.0 km s −1 . The observations support the scenario of magnetic reconnection for the quasiperiodic microjets and further show that the reconnection continuously generates multitemperature components, especially the cool component with chromospheric temperature. In addition, the ongoing reconnection is modulated by p-mode oscillations inside the Sun. 
    more » « less
  3. Abstract We gave an extensive study for the quasi-periodic perturbations on the time profiles of the line of sight (LOS) magnetic field in 10 × 10 sub-areas in a solar plage region (corresponds to a facula on the photosphere). The perturbations are found to be associated with the enhancement of He I 10830 Å absorption in a moss region, which is connected to loops with million-degree plasma. FFT analysis to the perturbations gives a kind of spectrum similar to that of Doppler velocity: a number of discrete periods around 5 minutes. The amplitudes of the magnetic perturbations are found to be proportional to magnetic field strength over these sub-areas. In addition, magnetic perturbations lag behind a quarter of the cycle in the phase with respect to the p-mode Doppler velocity. We show that the relationships can be well explained with an MHD solution for the magneto-acoustic oscillations in high- β plasma. Observational analysis also shows that, for the two regions with the stronger and weaker magnetic field, the perturbations are always anti-phased. All findings show that the magnetic perturbations are actually magneto-acoustic oscillations on the solar surface, the photosphere, powered by p-mode oscillations. The findings may provide a new diagnostic tool for exploring the relationship between magneto-acoustic oscillations and the heating of the solar upper atmosphere, as well as their role in helioseismology. 
    more » « less